3.807 \(\int \frac{(a+b \sec (c+d x))^2}{\sqrt{\cos (c+d x)}} \, dx\)

Optimal. Leaf size=95 \[ \frac{2 \left (3 a^2+b^2\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}-\frac{4 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 b^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(-4*a*b*EllipticE[(c + d*x)/2, 2])/d + (2*(3*a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*b^2*Sin[c + d*x]
)/(3*d*Cos[c + d*x]^(3/2)) + (4*a*b*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.144892, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {4264, 3788, 3768, 3771, 2639, 4046, 2641} \[ \frac{2 \left (3 a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{4 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 b^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^2/Sqrt[Cos[c + d*x]],x]

[Out]

(-4*a*b*EllipticE[(c + d*x)/2, 2])/d + (2*(3*a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*b^2*Sin[c + d*x]
)/(3*d*Cos[c + d*x]^(3/2)) + (4*a*b*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x))^2}{\sqrt{\cos (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} (a+b \sec (c+d x))^2 \, dx\\ &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \left (a^2+b^2 \sec ^2(c+d x)\right ) \, dx+\left (2 a b \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{2 b^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-\left (2 a b \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (\left (3 a^2+b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{2 b^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-(2 a b) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (3 a^2+b^2\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{4 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 \left (3 a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 b^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.5771, size = 73, normalized size = 0.77 \[ \frac{2 \left (\left (3 a^2+b^2\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )-6 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\frac{b \sin (c+d x) (6 a \cos (c+d x)+b)}{\cos ^{\frac{3}{2}}(c+d x)}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^2/Sqrt[Cos[c + d*x]],x]

[Out]

(2*(-6*a*b*EllipticE[(c + d*x)/2, 2] + (3*a^2 + b^2)*EllipticF[(c + d*x)/2, 2] + (b*(b + 6*a*Cos[c + d*x])*Sin
[c + d*x])/Cos[c + d*x]^(3/2)))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 3.614, size = 514, normalized size = 5.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^2/cos(d*x+c)^(1/2),x)

[Out]

2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1
)/sin(1/2*d*x+1/2*c)^3*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*a*b*sin(1/2*d*x+1/2*c)^2+6*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(
1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*sin(1/2*d*x+1/2*c)^2+2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*
d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2*sin(1/2*d*x+1/2*c)^2-24*a*b*cos(1/2*d*x+1/2*c)*sin(1/2*
d*x+1/2*c)^4-6*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2))*a*b-3*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))-b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1
2*a*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+2*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)*(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}}{\sqrt{\cos \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \sec{\left (c + d x \right )}\right )^{2}}{\sqrt{\cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**2/cos(d*x+c)**(1/2),x)

[Out]

Integral((a + b*sec(c + d*x))**2/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)